Chapter 12
Feature Selection

Xiaogang Su
Department of Statistics
University of Central Florida
Outline

- Why Feature Selection?

- Categorization of Feature Selection Methods
 - Filter Methods
 - Wrapper Methods
 - Embedded

- RELIEF
Why Feature Selection?

• It is cheaper to measure less variables.

• The resulting classifier is simpler and potentially faster.

• Prediction accuracy may improve by discarding irrelevant variables.

• Identifying relevant variables gives more insight into the nature of the corresponding classification problem.

• Alleviate the “curse of dimensionality”.

Categorization of Feature Selection Methods

- **Wrapper:**
 - Feature selection takes into account the contribution to the performance of a given type of classifier.

- **Filter:**
 - Feature selection is based on an evaluation criterion for quantifying how well feature (subsets) discriminate the two classes.

- **Embedded:**
 - Feature selection is part of the training procedure of a classifier (e.g. decision trees).
Embedded Methods

- Attempt to *jointly* or *simultaneously* train both a classifier and a feature subset.

- Often optimize an objective function that jointly rewards accuracy of classification and penalizes use of more features.

- Intuitively appealing.

- **Example**: tree-building algorithms
Filter and Wrapper Methods

Filter Approach

- Input Features
- Feature Selection by Distance Metric Score
- Train Model
- Model

Wrapper Approach

- Input Features
- Feature Selection Search
- Train Model
- Model

Feature Set

Importance of features given by the model
Filter Methods

- Features are scored independently and the top S of them will be used by the classifier.

- **Score:** correlation, mutual information, t-statistic, F-statistic, p-value, tree variable importance ranking, etc.
Several Filter Methods for Variable Screening

- Correlation matrix; VIF (Variance Inflation Factor)

- RELIEF (Kira and Rendell, 1992) ranks variables as per distance.

- FOCUS (Almuallim and Dietterich, 1991) searches for smallest subset that completely discriminates between target classes.

In filter methods, variables are evaluated independently and not in context of a learning algorithm.
Problems with Filter Methods

- Redundancy in selected features: features are considered independently and not measured on the basis of whether they contribute new information.

- Interactions among features generally cannot be explicitly incorporated (some filter methods are smarter than others).

- Classifier has no say in what features should be used: some scores may be more appropriate in conjunction with some classifiers than others.
Wrapper Methods

- Done in an iterative manner. Many feature subsets are scored based on classification performance of a classifier and the best is used.

- Problems:
 - Computationally expensive: for each feature subset to be considered, a classifier must be built and evaluated.
 - No exhaustive search is possible (2 subsets to consider): generally greedy algorithms only.
 - Risk for overfitting.
RELIEF

- Initialized by Kira K, Rendell L, *10th Int. Conf. on AI*, 129-134, 1992. Having been extended, the first version of RELIEF handles only binary responses.

- **Idea**: Relevant features make (1) nearest examples of same class closer and (2) nearest examples of opposite classes more far apart.

- RELIEF assigns weights to variables based on how well they separate samples from their nearest neighbors from the same and from the opposite class.
RELIEF - Steps

- Normalize data first.

- Set the relevance of every feature as zero

- For each example or observation in training set:
 - Find nearest example or observation from same (hit) and opposite class (miss)
 - Update weight of each feature by adding $abs(example - miss) - abs(example - hit)$
Algorithm RELIEF for Data with Binary Responses.

- Initialize all importance measures $W_j = W(X_j) = 0$ for $j = 1, 2, \ldots, p$;
- Do $k = 1, 2, \ldots, K$
 - Randomly select an observation $\{k : (y_k, x_k)\}$, call it “Obs-k”;
 - Find the observation m, called ‘the nearest miss’, which is closest, in terms of the distance in x, to “Obs-k” and has response y_m equal to y_k;
 - Find the observation h, called ‘the nearest hit’, which is closest, in terms of the distance in x, to “Obs-k” and has response y_h unequal to y_k;
 - Do $j = 1, 2, \ldots, p$,
 - Update $W_j \leftarrow W_j - \frac{\text{diff}(x_{kj}, x_{mj})}{m} + \frac{\text{diff}(x_{kj}, x_{hj})}{m}$;
 - End do;
- End do.
RELIEF- Algorithm

In the outlined algorithm, function \(\text{diff}(x_{kj}, x_{k'j}) \) computes the difference between \(x_{kj} \) and \(x_{k'j} \), the values of predictor \(X_j \) for observations \(k \) and \(k' \). While various distance definitions can apply to measure the difference, it is defined in the original proposal, for categorical predictors, as

\[
\text{diff}(x_{kj}, x_{k'j}) = \begin{cases}
0 & \text{if } x_{kj} = x_{k'j} \\
1 & \text{otherwise}
\end{cases}
\]

and for continuous predictors as

\[
\text{diff}(X_{kj}, X_{k'j}) = \frac{|x_{kj} - x_{k'j}|}{\max(X_j) - \min(X_j)},
\]

where \(\max(X_j) \) and \(\min(X_j) \) are the maximum and minimum of \(X_j \), respectively. With this formulation, it is no need to normalize or standardize variables that are measured in different scales. An implementation of RELIEF is available in R package: \texttt{dprep}.
Function relief{dprep}

relief(data, nosample, threshold, vnom)

Arguments
data the dataset for which feature selection will be carried out
nosample number of instances drawn from the original dataset
threshold the cutoff point to select the features
vnom a vector containing the indexes of the nominal features

References