Suggested Exercises for Chapter 5

1 Suppose X is a random variable with a uniform probability distribution with lower bound 2 and upper bound 4. Find $f(x)$, the mean, the standard deviation, $P(\mu - \sigma \leq X \leq \mu + \sigma)$, and $P(X > 2.78)$.

2 Based Uniform(2, 4), find the value of a for each of the following statements:
 a. $P(X \geq a) = 0.5$; b. $P(X \leq a) = 0.2$; c. $P(X \leq a) = 0$; d. $P(2.5 \leq X \leq a) = 0.5$.

3 Find the following probabilities for the standard normal random variable Z:
 a. $P(Z > 1.46)$; b. $P(Z < -1.56)$; c. $P(0.67 \leq Z \leq 2.41)$; d. $P(-1.96 \leq Z \leq -0.33)$; e. $P(-2.33 \leq Z \leq 1.50)$.

4 Find a value of the standard normal random variable Z, call it z_0, such that
 a. $P(Z \leq z_0) = 0.0401$; b. $P(-z_0 \leq Z \leq z_0) = 0.95$; c. $P(-z_0 \leq Z \leq z_0) = 0.8740$; d. $P(-z_0 \leq Z \leq 0) = 0.2967$; e. $P(-2 \leq Z \leq z_0) = 0.9710$.

5 The random variable X has a normal distribution with $\mu = 300$ and $\sigma = 30$. a. Find the probability that X assumes a value more than 2 std. dev. from its mean; b. Find the probability that X assumes a value within 1 std. dev. from its mean; c. Find the value of X that represents the 80th percentile of the distribution.

6 Resource Reservation Protocol (RSVP) was originally designed to establish signaling links for stationary networks, which was applied to mobile wireless technology. A simulation study revealed that the transmission delay (measured in milliseconds) of an RSVP-linked wireless device has an approximate normal distribution with mean $\mu = 48.5$ and $\sigma = 8.5$. a. What is the probability that the transmission delay is less than 57 milliseconds? b. What is the probability that the transmission delay is between 40 and 60 milliseconds.

7 Suppose X has an exponential distribution with mean $\theta = 1$. Find the following probabilities:
 a. $P(X > 1)$; b. $P(X \leq 3)$; c. $P(X > 1.5)$.

8 In NASCAR races such as Daytona 500, 43 drivers start the race; however, about 10% of the cars do not finish due to the failure of critical parts. University of Portland professors conducted a study of critical-part failures from 36 NASCAR races. The researchers discovered that the time (in hours) until the first critical-part failure is exponentially distributed with a mean of 0.10 hour. a. Find the probability that the time until the first failure is 0.2 hours or more; b. Find the probability that the time until first failure is less than 0.4.

9 Suppose there are n identical machines are running. For each machine, the time until failure follows an exponential distribution with mean θ. Consider the time until the first failure among all these machines. What distribution does it follow?