Problem 1 (25 pts)

Estimate the integral \(I = \int_{0}^{\pi/2} \sin x \, dx \)

A) Using Trapezoidal Integration with 10 equally spaced intervals.

B) Using Simpson's 1/3 Rule with 10 equally spaced intervals.

Fill in the following table to help with the calculations. Round all calculations to 4 places after the decimal.

<table>
<thead>
<tr>
<th>i</th>
<th>(x_i)</th>
<th>(f_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Problem 2 (25 pts)

The following integral is to be approximated using Trapezoidal Integration.

$$I = \int_{0}^{4} \left[-\frac{1}{12}(x-2)^{4} + 2x^{2} \right] dx$$

Let I_n represent the approximation to I when the interval $(0,4)$ is subdivided into n equal sub-intervals. How many sub-intervals must there be so that the error $|I - I_n|$ is at most $\frac{10^{-4}}{3}$?
Problem 3 (25 pts)

A quadratic spline is to be fit thru the following points: (0,1), (1,2), (3,3), (4,2).

The spline is given by

\[
\begin{align*}
 f(x) &= b_1x + c_1 & 0 \leq x \leq 1 \\
 & a_2x^2 + b_2x + c_2 & 1 \leq x \leq 3 \\
 & a_3x^2 + b_3x + c_3 & 3 \leq x \leq 4
\end{align*}
\]

A system of 8 equations in the 8 unknowns \(b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3 \) can be represented by \(Ax = b \). The vectors are \(x = [b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3]^T \) and \(b = [2, 2, 3, 3, 1, 2, 0, 0]^T \)

Find the coefficient matrix \(A \).
Problem 4 (25 pts)

An unknown function generated the following data points:

(0,0), (1,1.6487), (3,13.4451)

A) Find the Newton Divided Difference interpolating polynomial \(f_2(x) \).

B) An additional data point (2,5.4366) is available. Estimate the error in \(f_2(2.5) \).

C) The data points were generated from the function \(f(x) = xe^{x/2} \). Find the true error in \(f_2(2.5) \).

D) Estimate of error in \(f_2(2.5) = \) _________

E) True error in \(f_2(2.5) = \) _________
Problem 5 (25 pts)

Solve the following system of equations by using a sequence of elementary row operations on the augmented matrix until it has been reduced to its Echelon form.

\[
\begin{align*}
 w & + & x & + & y & - & z & = & 1 \\
 2w & - & x & + & 3y & - & 2z & = & -2 \\
 w & & & + & y & - & z & = & 0 \\
 2x & & & + & y & & & = & 1
\end{align*}
\]