Duration, Convexity, and Immunization

\[P(i) = \sum_{t=1}^{n} v^t R_t; \quad P'(i) = -\sum_{t=1}^{n} tv^{t+1} R_t; \quad P''(i) = \sum_{t=1}^{n} t(t+1)v^{t+2} R_t \]

Duration: \(\bar{d} = (\sum_{t=1}^{n} tv^t R_t)/(\sum_{t=1}^{n} v^t R_t) \)
Modified Duration: \(\bar{v} = -P'(i)/P(i) = \bar{d}/(1+i) \)
Convexity: \(\bar{c} = P''(i)/P(i) \)
We have \(\Delta \)-hedging
\[
P(i + h) \approx P(i)[1 - h\bar{v}] \]
\(\Gamma \)-hedging
\[
P(i + h) \approx P(i)[1 - h\bar{v} + \frac{h^2}{2}\bar{c}] \]

Example 1: A owes B $1100 at the end of one year and is required to set up an investment fund in order to meet this obligation. The only investments available are a money market fund earning 10% currently with the rate changing daily and two-year zero coupon bond also earning 10%. Assume the effective rate of interest is equal to 10% in all calculations.
(a) Develop an investment program based on immunization.
(b) Compute modified duration and convexity.
Let \(X \) be the amount invested in the money market fund and \(Y \) be the amount invested in two-year zero coupon bonds. Then we have
\[
P(i) = X + 1.21Y(1+i)^{-2} - 1100(1+i)^{-1} \]
\[
P'(i) = -2.42Y(1+i)^{-3} + 1100(1+i)^{-2} \]
\[
P''(i) = 7.26Y(1+i)^{-4} - 2200(1+i)^{-3} \]
For immunization (delta-hedging), we should have \(P(i) = P'(i) = 0 \), which leads to \(X = 500 \), and \(Y = 500 \). The modified duration and convexity are \(\bar{v} = 0.90909 \) and \(\bar{c} = 2.47934 > 0 \).

Example 2: The current price of an annual coupon bond is 100. The derivative of the price of the bond with respect to the yield to maturity is -700. The yield to maturity is an annual effective rate of 8%. Calculate the duration of the bond.
(A) 7.00 (B) 7.49 (C) 7.56 (D) 7.69 (E) 8.00
\[
\bar{d} = \bar{v} * (1+i) = (-P'(i)/P(i)) * (1+i) = 700 * 1.08/100 = 7.56
\]
Example 3: Calculate the duration of a common stock that pays dividends at the end of each year into perpetuity. Assume that the dividend increases by 2% each year and that the effective rate of interest is 5%.
(A) 27 (B) 35 (C) 44 (D) 52 (E) 58
\[
\bar{d} = \frac{\sum_{t=1}^{\infty} tv^t D(1.02)^{t-1}}{\sum_{t=1}^{\infty} v^t D(1.02)^{t-1}} = \frac{\sum_{t=1}^{\infty} tv^t(1.02)^t}{\sum_{t=1}^{\infty} v^t(1.02)^t} = \frac{\sum_{t=1}^{\infty} t(1.02/1.05)^t}{\sum_{t=1}^{\infty}(1.02/1.05)^t} = 35
\]