Model for a partially coherent Gaussian beam in
atmospheric turbulence with application in

Lasercom

Olga Korotkova, MEMBER SPIE
Larry C. Andrews, FELLOW SPIE
University of Central Florida
Department of Mathematics
Orlando, Florida 32816

Ronald L. Phillips, FELLOW SPIE

University of Central Florida

Florida Space Institute

MS: FSI, Kennedy Space Center,
Florida 32899

Abstract. Analytic expressions for the mutual coherence function
(MCF) and the scintillation index of a partially coherent lowest order
Gaussian beam wave propagating through the atmosphere (based on
Kolmogorov spectrum model) are developed for the pupil plane of a
receiving system. Partial coherence of the beam is modeled as a thin
(complex) phase screen with Gaussian spectrum (Rytov theory and
ABCD ray matrices are applied). The relation between the second- and
fourth-order statistics for a beam with any degree of coherence in the
atmosphere is introduced with the help of “effective” beam parameters,
deduced from the free-space MCF. In particular, the scintillation (in weak
and strong atmospheric conditions), based on these parameters, is stud-

ied as a function of the diffuser’s strength and that of the atmosphere.
The model is applied for the calculation of the SNR and bit error rates
(OOK modulation) of the communication link with diffuser at the trans-
mitter and slow detection system. The improvement of bit error rates is
observed in weak and strong atmospheric turbulence. In the weak re-
gime, the optimal diffuser can be found. © 2004 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1636185]
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1 Introduction for describing the partial coherence of the source b&aih.

The interest in the spatially partially coherent beam as aThi_s model utilizes a Gaussian corrglation function to de-
tool improving the performance of laser communication SC'ibe the surface roughness of the diffuser, often leading to
systems was indicated recently in a number of Simplifications. However, in practice a diffuser with other
publicationst® Although it was theoretically understood SPectral distribution function might be used so that it is
before that partially coherent beams are affected less byPreférable to have a spectrum-independent model.
atmospheric turbulence compared with perfectly coherent ~ The free-space second-order statistical characteristics of
beams.? the efficient mathematical tools are not yet devel- 2 partially coherent beam are quite easy to develop and are
oped to carry this analysis over to the design of optical discussed in detail in Mandel and WéffFourth-order sta-
systems for communication links with required quality. In tistics follow directly from second-order statistics only for
this paper, we establish the theoretical model for the calcu- the special case of a Gaussian field model.
lation of the scintillation index of the partially coherent Banakh et af®*° and Banakh and Buldak8Vshowed
Gaussian beam in turbulence and demonstrate that it carthat intensity fluctuations of the Gaussian beam propagat-
provide such a tool for optical systems of different com- ing through atmospheric turbulence can decrease as the
plexity and for a variety of atmospheric spectrum models. Source spatial coherence decreases. In these papers,
First, we present a short overview of the literature. asymptotic results were derived for the weak and saturation
Studies of the propagation of a partially coherent beam atmospheric regimegexcluding the important case of the
wave through atmospheric turbulence have been conductedocusing regimg In particular, in Ref. 29, only the limiting
over the past three decades by numerous researchéta. case of quasi-incoherent radiation was considered; in Ref.
partially coherent sourcéspatially can be generated in a 30, the comparison of rigorous solution for the scintillation
number of different ways, including the placement of a dif- index of incoherent source with experimental data was
fuser at the laser transmitter of a quasi-monochromatic made. To our knowledge there are no analytic results for
source. Most theoretical studies concerning a spatially par-fourth-order statistics in the literature for the general case
tially coherent beam wave rely on a Gaussian Schell model of the beam with arbitrary degree of spatial coherence.
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The effects of a temporally partially coherent source Collecting lens

were studied by Fanttand by Baykal and Plonus. it Deteqtor
The conventional method for developing the mutual co- ‘:t_mﬂh_e:e____//»

herence functiofMCF) of a spatially partially coherent Laser . \;

source is to use the extended Huygens-Fresnel principle. \ /'

From knowledge of the MCF, one can then infer the spot L L

radius of the beam and the spatial coherence radius. Exten- <

sion of the extended Huygens-Fresnel principle to fourth-
order statistics, such as the scintillation index, leads to
mathematical complexities in the resulting integration that
necessitate various types of approximations. The extended
Huygens-Fresnel principle was used by Banakh &1 ahd sents the derivation of the mutual coherence function of a
by Baykal and Plon#é whereas Leadé&t used the partially coherent beam in free space. In Sec. 4 the effective
Rayleigh-Sommerfeld scattering theory. Most theoretical beam parameters of partially coherent beam are defined and
calculations, however, were based on a quadratic approxi-applied in the calculation of longitudinal and radial compo-
mation for the structure function. A quadratic phase struc- nents of the scintillation index in weak and strong atmo-
ture function implies that only wave tilts are induced on the spheric turbulencéncluding the focusing regimeThe ap-
wave by turbulence, which can lead to results that are in- plication of the model for a communication link is
consistent with experimental data?® demonstrated in Sec. 5, where the SNR and bit error rates
In this paper, we present an approach basedAB&D are calculated.
ray matrix theory and model the diffuser as a thin random
phase screen that induces a complex phase perturbatio Basic Model and Beam Parameters
(i.e., both amplitude and phasen the transmitted wave at

Fig. 1 Propagation of a partially coherent beam.

13 g ; . A schematic diagram of the diffuser model and propagation
the sourcé.**We note that it s a different modeling from channel for the partially coherent beam is shown in Fig. 1.

the well-known phase screen approach, where only phaseWe assume the transmitted beam wave in absence of the

perturbations are taken into account. Although our method . . : .
is flexible about the spectrum model for the diffuser diffuser is a TEMy Gaussian beam wave characterized by
beam parameters

fact, any physically meaningful spectrum could be applied
in this paper we use a Gaussian power spectrum to make a
. . L 2L

comparison of our new results with those based onthe con-g =1 —  Ay=—,
ventional Gaussian Schell model. Fo kW;

Primarily, we focus our attention on the scintillation in-
dex of the beam because this is the most important statisticwherek=2m/\ is the laser wave numbex, (in meters is
for practical applicationglasercom, laser radar systems, wavelength,L (in meterg is propagation distance to the
etc); however, other second- and fourth-order statistics of collecting(Gaussiajplens,F, (in meters is the phase front
the wave field can be similarly calculatéefer to Chap. 8 radius of curvature, anilVy (in meters is the laser exit
of Ref. 32. aperture radius.

The other important generalization that our approach  Following Andrews and Phillip§2, we introduce param-
provides is the ability to utilize any of known atmospheric etersA; and ®, for the beam incident on the collecting
spectrum modefé including inner and/or outer scales. In  |ens (in the pupil plang which characterize the unper-

this study(for the case of weak atmospheric turbulence tyrbed incident beam spot size radig and phase front
we restrict ourselves to the Kolmogorov spectrum model 44ius of curvature ; :

for illustration purposes. Analytic results for the scintilla-

tion index of a partially coherent beam valid in weak atmo- 2L Ao L 0,
spheric fluctuations will be then extended to all atmo- Aj=—5=—F——, O;=1+—=—%—7.
spheric conditions with the help of a theory developed by kM Op+Ag Fi Op+Ag

Andrews et af®34 , , ,
Therefore, none of the previously existing restrictions on Ve assume the Gaussian lens at the receiver has fagus

the degree of spatial coherence of the beam, diffuser, and/o@nd phase front radius of curvatufe; . After propagating
atmospheric spectrum models and the atmospheric regimethrough the lens to the detector located in the image plane
are present in our model so that the continuous dependencét distance. behind the lens, the beam has radiis and

of the scintillation index on the source coherelgsgength radius of curvaturd=,, which are characterized by beam
of the diffusej and strength of the atmospheric turbulence parameters

can be analyzed.

)

2

Note also that theABCD ray matrix can be calculated 2L; L N+ Qg
for the arbitrary optical system so that the scintillation in- AzIW: — — )
dex and other statistics can be derived at any distance from KWz L[ (L/Li=L/Fg+01)2+(A;+Qg)?
the transmitter after passing through any combination of
optical elements, in particular, image plane analysis be- L, L { L/Li—L/Fg+©,
comes possibl& 0,=1+—=— — ,
Section 2 discusses the model and defines the Gaussian Fo o Li| (L/IL;i—L/IFg+0 )%+ (A;+Qg)?
beam parameters for free-space propagation. Section 3 pre- (4)
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where®,=1-0, and the nondimensional paramefeg, _aD-iC

is defined by (L=2FaB" (10

Q= 2L (5) Let us assume the optical field at the transmitter is a unit-
G kvvé' amplitude Gaussian beam wave with spot sig and

_ _ _ phase front radius of curvatuig, described by beam pa-
In Eq. (4) we identify the image plane of the system by rameters in Eq(1). Based on the simpléBCD matrix
imposing the generalized lens law condiffonL/L; given by Eq.(8), the optical field Eq(9) in the pupil plane

~L/Fg+0,=0, or®,=0. in the absence of atmospheric turbulence is

We model the diffuser in front of the laser transmitter by
a thin random phase scre#t? However, we characterize  U(r,L)=Ug(r,L)exgd Wy(r,L)]
the phase screen by a power spectrum function rather than

by a correlation function as in the Gaussian Schell model. =(®1+A1)ex+kL+ £(®_1+iA1)r2
And, because the lateral correlation radiygin meters is 2L
the only effective scale size associated with the diffuser, we X exg Wq(r,L)] (11)

can characterize the diffuser by a single-scale Gaussian

spectrum model whereW is the complex phase perturbation caused by the

diffuser. By using the thin phase screen model developed

B ()= (nHI3 oxd — llsz) ©) by Andrews and Phillip§ Andrews et al’’ we find that the

s 8w\ 4:¢< MCF of the Gaussian beam in the pupil plane is giveh by
where « (in inverse metepsis wave number, and, (in Caig(re,ro,L)=(U(r{,L)U*(r,,L))
meters is directly related to the variana% used in Refs. 1 -
and 25 to describe the partial coherence properties of the =F0(rl,r2,L)ex% —47r2k2Azf kP4 k)
source, namely, 0

_ 2
2202 - X[1—exp(A,L %K)

The parametefn?) is the fluctuation in the index of refrac- X Jo(x|©1p— 2iA1r|)]d"] ' (12)
tion induced by the diffuser.

. . _ 2 . . ;
~In the following, we introducegc=L/kl; as a conve-  \hereAz is the thickness of the phase scredg(x) is a
nient nondimensional parameter analogous to the atmo-gggsel function,r = (1/2)(r,+r,), p=ri—rs, r=|t|, p

spheric parametetqu/kaZ)I used in propagation studies, =|p|, andT(r;,r,,L) is the MCF in the absence of the
wherep, is the spatial coherence radius of a plane wave in diffuser defined by
turbulence.
Po(raro) = e - 2 £ ) a3
. ri,fo,L)=cmexp — 7= 5oz i =pr]|.
3 Mutual Coherence Function in Free Space oo Wi Wi 2wi Ry

Referring to Fig. 1, théABCD ray matrix for the propaga-
tion path between the diffuser and pupil plane of the optical
system is simply

Note that integration along the propagation path is not re-
quired in this thin phase screen model. r%v rearranging
terms, Eq.(12) can also be written in the fo

A B 1 L )
= : (8) Lyifr(ra,ro,L)=To(ry,ra,L)exd oy gig(ry,L)

C D 0 1
_ , , +Urz,diff(rz,L)]eXF[—Tdiff(L)]
The optical beam in the absence of the diffuser can be
obtained from the generalized Huygens-Fresnel integral, Xexd — 3 Agi(ri,r2,0)], (14
which yields*
where each radial termfydiﬁ(r,L) is linked to a change in

Uo(r,L)=— LeikLJ J d?sUy(s,0) the mean intens_ity profile‘l,'diff(l__) describes _the Ior_1gitudi-
2mB nal or on-axis change in mean intensity, and

ik

Xexp{—(Asz—Zs'H— Drz)}
2B *Note that the function defined by EQ.2) is usually called the MCF only
by scientists working in areas of atmospheric propagation and lasercom
1 kL 1 2 systems. However, this is only the spatial component of the standard

=———¢e"exp — 5 B( L)kre|, 9 MCEF defined in classic literatur¢he temporal counterpart is ignored due

A+iaB 2 to the assumption of a quasi-monochromatic beahherefore, in our
notationI" 4x(r,,r,,L) is the same as the mutual intensitfr,,r,,L)

wherer =|r|, s=|g, AD—BC=1, and introduced in Mandel and W&ff or Jy(r,r,,L) by Goodmar?!
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Re[Air(r1,r2,L)]=Dyir(r1,r2,L) is the wave structure 02+ A2 (2r2+p2)/2
function (WSF). We use Re to denote the real part of the Lgie(r,p,L) = [ET expg — W2(114A,00)
expression.
If we use the Gaussian spectryi®g. (6)], each radial 02+ A2\ p2
component of the MCIFEQ. (14)] reduces to Xexp — | |7z |exp
1+4A1q.) £
© |k 1_®l+4Aqu
2 21,2 2 X|—| (20)
oy gi(r,L)=2mKk“Az . kD (k)exp(—ALk/Kk) L 1+4A,q,
X[1o(2A1r k) —1]dk Although we use different notation, it is easy to show
oo - that this expression for the MCF is in exact agreement with
B Jm(n)k? Az 4ATT that based on a Gaussian Schell model and a quasi-
T 2(1+4A.q0) € 12(1+4A,q0)) ) monochromatic Gaussian beam wafgeg., see p. 280 in
¢ ¢ Mandel and Wolf®). All second-order statistics based on
(15 the MCF such as beam intensity, coherence radius, beam
spread, etc. can also be deri%ﬁom Eq. (20).
where 1o(x)=Jo(ix). To equate our results with those The.calculatlon of the MCF in thg p_Iane of thg photode-
based on a Gaussian Schell model, we introduce the nor-I€ctor (image plang can be made similarfy? In this case
malization the ABCD ray matrix takes the form
A B 1 L 1 0\/1 L
2\ 1,2 =
J;<”1>k'cAZ:1 19 c o/ \o 1/liag 1/l0 1
1+4A4q; ' . .
1+iagls L+Lf(1+|aGL)) o1
= . . , 21
Then, combined with a small argument approximation for lag 1+iagl
the exponential function consistent with the Rytov theory, .
we obtain the expression where ag=2/(kWg) +i(1/Fg).
, 2A§r2 4A4q, [ r2 4 Scintillation Index S
or gin(r,L) = 2(114A,q0  1+4A.q. | W2 17) Next we calculate the scintillation index caused by the
Cc Cc

combination of diffuser and atmospheric turbulence. In cal-
culating the scintillation index, it is the integrated intensity
Similarly, the longitudinal component of the MCF is that we must consider, taking into account the response
time 74 of the detector and the coherence timgof the

o source. That is, the coherence time of a quasi-
Tdiff(L):4772k2Azf k®(k)[1—exp —A;Lx?/k)]dk monochromatic laser source t§=1/B, whereB is the

0 bandwidth of the source. If the source coherence time is
much smaller than the detector’s integration time interval
T4, 1.€., Ts<T74 (Slow detectoy, temporal averaging of the
fluctuating intensity occurs, which reduces the scintillation
where we have again used the normalization of @) level through source aperture averagid? In the case of
and small argument approximation. The remaining quantity a fast detector> 74, the detector is sensitive to intensity
Agir(ry,ro,L) in Eg.(14) has both real and imaginary parts fluctuations of the source as well as those caused by the
given by atmospheric turbulence. In both cases above the coherence
time 7, of the atmospheric turbulence is slow with respect
to bothrg and 7y, i.e.,

=4A4qc, (18

Agige(r1,ro,L) =4772k2AZf k®(k)exp— AL k?/K)
0 TR Tg< Ty, (22

X[|0(2A1F1K)+|0(2A1I’2K)
_2J0(K|1p_2|Alr|)]dK
O2+A7 \ p2  4iO;Arp

1+4A10c) 12 (1+4A,q012" (19 for a fast detector. In this paper, we restrict ourselves to the
case of slow detector only.

for a slow detector, and

T T T, (23

the last step of which is a result of using the normalization S

of Eq. (16) and small argument approximation. The combi- 41 ~Longitudinal Component

nation of results taken from Eq$12) to (19) yields the In this section we develop the on-axis or longitudinal atmo-
following form for the MCF spheric scintillation index. The longitudinal component of
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the scintillation index at the collecting lens will be used in absence of the diffusgrHence, in the development here,
Sec. 5 for the calculation of the flux variance of intensity we will formally replace the paramet@, with the effec-

fluctuations at the photodetector. tive beam parameter
In the presence of atmospheric turbulence, we must take
into account some scattering properties caused by the dif- L 0, 0,
fuser. Namely, each scattering centgpeckle cell sizeas- O.=1+ (28

E - ~ a2 2N !
sociated with the spatial correlation radiyof the diffuser Fe 1+4A:0; Op+AgNs

surface acts like a separate beam coherence center within )
the original beam source diameter. Hence, the diffuser cre-Where we have relate@, to receiver plane beam param-
ates an “array of independent scattering centers,” the num- €ters and to transmitter plane beam parameters. The quan-

ber of which is often approximated By tity Ns is the number of speckle cell&qg. (24)].
For the effective beam parametkg we are faced with a
2W§ 4q, different situation. Namely, the term involving? can be
Ne=1+ |§ :1+A_0' (24) associated with longitudinal characteristics of the beam

wave induced by the diffusérather than specific points in
Thus, the number of speckle cells is of the order of unity the beam In this case, we define
for a weak diffuser and increases rapidly as the correlation
radiusl; decreases. Taking the scattering properties of the AqNg AoNs

diffuser into account, we find it useful to model the beam at “*¢~ 1+4A,q, ©2+A2N,’ (29
the receiver by an “effective diffuser beantlenoted later
by the subscripte) that changes in accordance with the limiting cases of which lead to
roughness or strength of the diffuser.
We can characterize the effective diffuser beam at the A -0
receiver by replacing the standard beam paramégrand A 1 G (30)

A that arise in the absence of the diffuser with a set of ® (Ao, Qe
effective beam parametef3, and A.. To identify these ) ) )
effective beam parameters, we simply compare parametersfhat is, for a weak diffuser the effective beam parameter of
of the MCF in the absence of the diffuser with parameters EQ. (29) reduces to parametek;, whereas for a strong
associated with the MCF in the presence of the diffuser. For diffuser it reduces to I, the latter of which can be as-
example, the MCF in the absence of the diffuser, scaled by sociated with transmitter aperture averagifiglowever, on

the on-axis intensity, is given by the basis of the radial behavior of the beam or effective spot
o size, we can identify an effective parameteg with the

Lo(r,p,L) Akr? Ajkp? kO, term involvingr? in Eq. (26). Doing so, we would obtain

To000) R~ TaL Pl (29 the same expression as E@9), but with N;=1 in the

numerator terms. Because we are concerned here with the
longitudinal component of the scintillation index, we use
Eq. (29) to defineA..

Based on the preceding observations, we claim the lon-
gitudinal component of the scintillation index in the pres-
) 5 ence of a diffuser is defined under the Rytov approximation
T g (r,p,L) _exp[ Aqkr AiNgkp by
L4ir(0,0L) (1+4A,090)L  4(1+4A500)L

which identifies beam paramete§1= —L/F; and A,
=2L/kW2. The scaled MCF in the presence of the diffuser
can be rearranged in the forfeee Eq.(20)]

e 2 a2 [ Ael k%
ik(@+4A.qc) 26 07 weal O.L) =87k Lf f k®,(k)exp — K
(1+4A,q0L ' P (29 o Jo
L x? —
On comparing similar terms appearing in E¢®5) and X 1—00{7 §(1-0.8) ]def, (31

(26), the effective radius of curvature of the beam can be

identified in Eq.(26) by the last term involving the com- _

plex exponential function, namely where®,=1-0,. Based on a Kolmogorov spectrum, this
integral yields?

_ L 0;+4Aq, , ,
Oe=— F.- 1+4Aq, (27 0% weal OL) =05

_ o ) ) M 511 17 — |
This quantity is a function of the strength of the diffuser =3.8607 Rg i”%F,| — 56" €;®e+|1\e
dc, Which in the limiting case of a strong diffusgg— o
(1;—0), yields®.=1 (i.e.,_th_e phase front radius of cur- B 1—1A5’6 32)
vatureF . approaches-L, similar to the case of a focused 16 ¢ |’

beanm. For a weak diffuseg,—0 (I.—), we are led to
0.=0, (i.e., F. reduces to its free-space valbeg in the where,F,(a,b;c;x) is a hypergeometric functiotf.
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0.7 T r . r 1.8 1
2_an-13_ 273 it LI oy
0.6} Cn=10 m 1.6f — -
Transmitter radus25em S\ S0 e ems
Wavelengh 1um 1.4}
0.5¢
« 04} — coherent e Y S
8 aem | S1CM — -~
3 incoherent = 1t == 4510
Nc_ 0.3} (=X — incoherent
N —
© o8}
0.2f
0.6 ]
| D E Range 1km
---------------- 0.4 Wavelength1um
B P e e Transmitter radius 2.5cm
""" 0.2 Collimated beam
B 100 200 300 200 500 of v - v .
0 10 20 , 30 40 50
L %
Fig. 2 Effective scintillation index of a partially coherent beam in Fig. 3 Effective scintillation index of a partially coherent beam in the
weak atmosphere versus strength of turbulence (Rytov variance o) atmosphere versus strength of turbulence (Rytov variance o) and
and nondimensional diffuser’s correlation q. . nondimensional diffuser's correlation g, .

Numerical values deduced from E@®2) are essentially  curve. For short range@up to 3 to 4 km partially coherent
the same as those obtained from E&).in Banakh et af° and incoherent beams assume lower levels of the scintilla-
In Fig. 2 we compare the scintillation ind¢kqg. (32)] as a tion index compared with a coherent beam.
function of propagation distance for a Gaussian beam
wave propagating through atmospheric turbulence in the ,
absence of the diffuség=2 (solid curve, for a moderate 4.2 Radial Component
diffuser withl .= 1 cm(dashed curveand for a very strong At a point in the beam wave off the optical axis, the scin-
diffuser 1.,=0 (dashed curve Input parameters ar&V, tillation index can be expressed as the sum of two compo-

—25cm, A=1um, and C2=10"3m 22 For smaller ~ N€NtS
values ofl the scintillation can be considerably reduced.
However, the effect generally saturateslfpof the order of

1 mm. where the first component is the radial component and the

Equation(32) is rest_ri_cted to weak fluctuations. Under second is the longitudinal component defined by &4).
strong fluctuation conditions, we can use the strong fluctua- The radial component vanishes on the optical ais @)

. 34 - .
tion theory developed by Andrews eta** which yields and, under weak fluctuation conditions in the absence of a
diffuser, it is known that the radial component of the scin-

of(r,L)=0%,(r,L)+cf(0L), (34)

2 2 . . . . .
o2 (OL)—ex 0-490152/ N 0-5117532/ tillation index is given by?
Lam = (1+0.56057)" " (1+0.6%5)°"°
~1, (33) »
whereo3 is defined by Eq(32). 16f

In Fig. 3 we show Eq(33) as a function of the Rytov 14}
variance o2=1.23C2k"L 1Y% for fixed propagation dis-

tanceL =1 km. There is a smooth transition of the scintil- F— coherent |
lation index from one limiting cas¢coherent beanino | e =tom

incoherent |

of(o,L)

diffuser, q.=0) to the other incoherenfstrong diffuser,
gc.==>)]. As the effect of the diffuser increases, the maxi-
mum value of the scintillation index does not change but
occurs at larger values of the Rytov variance; therefore, the
advantage of using partially coherent beams can be ex-
pected in weak or focusing atmospheric regimes.

Figure 4 displays the resulEqg. (33)] from a different
perspective: the refractive index structure parameter is
fixed C2=10"'m?3 but the propagation distance L(km)

Changes' We show three cases: coherent beamlywthv Fig. 4 Effective scintillation index of a partially coherent beam in the

(solid curve, partia!ly coherent beam. withl ;=1 cm atmosphere versus the propagation distance L and correlation dis-
(dashed curve and incoherent beam with.=0 (dotted tance /.

C§=1 0 13m23
Transmitter radius S5cm

Wavelength 1um
Collimated beam
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d.- The radial component of the scintillation index for the

o6} Range tkm incoherent source is zero independently of the displacement

. Wavelength 1um r

Transmitter radius 5cm . i i i

05| Rytovvariance 3.3 The radial component should generally be included into
analysis when perfect alignment of the transmitter and the

receiver systems is not possible.

- coherent
anes 4701

03} |-mn X -

04

(rL)

0_2
l

5 Application for Laser Communications

The reduction of the on-axis scintillation index due to par-
tial coherence of the source discussed in Sec. 4 alone would
not be sufficient for the high-quality data transfer calculated
in terms of the bit error rateBER) in communication sys-
tems. However, the combination of partial coherence with

0.2 |

01

R 02 04 05 08 1 large enough collecting lens can provide the required BER
W, level. Following Ref. 34, the flux variance of the irradiance
fluctuations(valid for all atmospheric conditionst the de-
Fig. 5 Effective radial component of the scintillation index for differ- tector plane calculated for the collecting lens with normal-
ent normalized correlations of the diffuser. ized radiusQg is

orad L+ L, Qg)=expgoh  (L+L;,Qg)

r2 +op(L+Ls,Q0)|-1, 39
ai,(r,L):4.4zg§A§’6W, r<W;, o2<1. (35) iny{ r{e)] =
! whereo?,, is the flux variance associated with large-scale

It was shown in Ref. 35 that an additional diffraction fluctuations given by’
caused by the atmosphere and diffuser together lead to an

. A Qe—Ag\?
effective spot radius given by o2 (L+L;,0Qg)=0.492 G ‘le
Oc+A,
We=W;(1+4q.A;+1.63712°A )12 (36) 7 716
XR N :
By following the approach in Refs. 34 and 37, we there- 1+0.474(1+ 0O )/ (AetQg)
fore make the beam parameter replacement (40
Ay whereR=1/3—(1/2)(1- 0,) + (1/5)(1- 0,)2. The quan-

Ay (37) tity 7, in Eq. (40) is the normalized large-scale cutoff fre-
guency determined by the asymptotic behaviormﬁ]fx in

weak turbulence and saturation regih&

T 14470+ 16325,

and formally deduce that

R~ 6/7( o /0_1) 12/7

A o ™= neR125 (42)
ol (r,L)=4.427% T a0t L6, X 1+0.560%
1
r? The small-scale flux variancef,, in Eq. (39) is simi-
X , T<Wj. larly defi
W§(1+4A1qc+ 1.630'12/5/\1) 1 arly defined by
(38) 1.2702 7, %

ahy(L+Ls,Qg)= (42)

) o 1+0.4n,/(A1+Qg)’

In both Eqgs.(35) and(38), we have retained the restriction

r<W,, although this may be more restrictive than neces- where the corresponding cutoff frequency is

sary. The full range of validity for these expressions has not

yet been established. As the Rytov variangg—x, the ny=3(01 /o) 1+ 0.6957). (43)

radial componen{Eq. (35)] eventually vanishes and the

beam wave acts more and more like a propagating spherical Figure 6 shows the flux variand&q. (39)] versus the

wave. normalized parameter of the collecting ledg [defined in
Note that, for a fixed strength of atmospheric turbulence Eq. (5)] for a perfectly coherent beam, several partially

(i.e., cr§=const.), the radial component vanishes in the coherent beams with,=0.1, 1, and 10, and an incoherent

limt 1.—0 (g.—«). Similarly, for a fixed diffuser beam. The propagation distanceL=1km, C2

strength(i.e., |, =const.), the radial component vanishes as =10 **m~?%  leading to the Rytov varianceo?

o%—o. In Fig. 5 we plot the radial component of the scin- = 1.23C2L1%"/6=0.33. We see that in the weak fluctua-

tillation index[Eq. (38)] versusr /W, for different values of tion regime there is a significant reduction of the flux, es-
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Fig. 6 Flux variance o2,4(L+L;,Q¢) as a function of the normal-
ized radius of the collecting lens Q ; for coherent and partially co-
herent beams in weak turbulence.

Fig. 8 Flux variance aﬁrad(L-t-L,,_OG) as a function of the normal-
ized radius of the collecting lens Q ; for coherent and partially co-
herent beams in strong turbulence.

pecially for a point aperture(};>1). With the increase of . . . .
the collecting aperture size this effect decreases. In theWhere'S is the received signal currefgproportional to the

analysis of the SNR and the BERs here we choose thetransmitted_powé.rand oN i; the standard deviation of the

collecting aperture radii#/c=1 cm to concentrate prima- d_etector noise. Since partially coherent beams have greater

rily on the averaging effect due to the transmitter. Similar divergence than coherent beams, the received power _de-

curves are generated in moderate turbulengg=(1.05) in pends on the degree of coherence of the wave as well, i.e.,
) ) L more power is required for less coherent beams to sustain

Fig. 7 and in strong turbulencerfz?.O) in Fig. 8, but 85 the same SNR as the perfectly coherent béahthe same

flux variance deminishes. fore in free space the relation between the SiREGd the

SNR of a partially coherent beam, say, SNRRan be de-
5.1 Signal-to-Noise Ratio (SNR) duced from this power loss or, equivalently, from the beam

. . . size of partially coherent beam at the receter
In free space, the signal to noise ratio SNRiE a coherent

beam is conventionally defined #y

SNRP — SNRG  SNRG
is O (PPo/PCy)™  (1+4qg.A1)"*
SNRG=—, (44) .
N - 's 45)
" oN(1TAgA )T (
0.35 . . . . . . . . whereP P, is the received power of the partially coherent
Transmitter radius 2 5¢m beam andPC, is the power of the coherent beam. The
03[ Rytov variance 1.05 s quantity 1+4q.A ; represents the relative beam spread due
Wavelengh 1um Pt . .
Collimated beam to the diffuser with strengti g .
In the atmosphere the standard definition of the mean
- SNR of a partially coherent beam can be adapted
g similarly®*3°
" (SNRP = SNRG
((PPY/PPy+ 05,,sSNRG) 2
SNRG,
T (1+4QqcA 1+ 1.635°A  + 02 SNRG) V2
% 2 5 4 5 & 7 & 8 10 (46)

. . 2 _ where brackets are used for ensemble averagifds the
Fig. 7 Flux variance oj,,q(L+Ls,Q¢) as a function of the normal-

ized radius of the collecting lens Q ; for coherent and partially co- Rytov variance, and flux varianae,,q was defined by Eq.
herent beams in focusing regime. (39).
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Fig. 9 (SNRP) (in decibels) as a function of SNRC,, (in decibels) in
weak turbulence for several values of /.

At first, note that Eq(46) implies that regardless of the
amount of the input power (SNRE(SNRP stays limited
by the scintillatioi® [in striking contrast with free space
analysis of Eq(45)], i.e.,

lim (SNRP= L (47)

SNRGy— Tirrad

The other important consequence of Ef) stems from
the fact that for given SNRgCand atmospheric conditions
the value of(SNRP is determined by two factors: power
reduction(P P)/PP, caused by beam divergence and flux
varianceo? .. While the former term obviously deterio-
rates(SNRP the latter can improve it. That is, 2,4 iS
reduced because of the diffuser, th@&NRP will increase
independently of beam spreading, provided SNRCsuf-
ficiently large according to Eq47).

Figures 9 to 11 showSNRP (in decibel$ is displayed
as a function of SNRg (in decibel$ in different atmo-

Transmitter radius 2.5¢cm
Collecting lens radius 1cm
Range 1km

Rytov variance 1.05

15F

<SNRP> (dB)

10p

°<’

100

SNRC, (dB)

Fig. 10 (SNRP) (in decibels) as a function of SNRC,, (in decibels) in
the focusing regime for several values of /.
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Fig. 11 (SNRP) (in decibels) as a function of SNRC, (in decibels) in
strong turbulence for several values of /..

spheric conditions. We note that in all regimes the atmo-
spheric SNR of a perfectly coherent beddashed-and-
dotted curves everywherés always below 21 to 22 dB,
which corresponds to conventionally accepted BER of the
operating systenof the order of 10°).

In the weak fluctuation regim@ig. 9) the use of partial
coherence provides a noticeable improvemen{SNRP,
namely, with SNRG in the range 40 to 50 dB, it is possible
to obtain (SNRP (in decibel$ exceeding 21 to 22 dB.
(This can be explained with help of Fig. 6, where it is
shown that the flux-variance of partially coherent beam in
this regime takes sufficiently low valug¢®lso, from Fig.

9, the saturation effediEq. (47)] of (SNRP with the in-
crease of input power is evident for any strength of the
diffuser and that of the turbulence. Therefore, for a particu-
lar communication link operating in weak turbulence there
exists the optimal diffuser. For example, in Fig. 9 for
SNRG=30dB the best choice is the diffuser with
=1cm (dotted curvg which corresponds to SNRP
=25dB.

In the focusing regime, the power reduction caused by a
partially coherent beam spreading starts to dominate the
favorable effect of the flux variandgecall Fig. 3. There-
fore, as shown in Fig. 10 stronger diffuser together with
greater amount of transmitted power are required; here, for
fixed SNRG=30 dB the diffuser withl.=1 cm (dotted
curve would not provide a sufficient level of BER; for
SNRG =50 dB the diffuser withl;=1 mm (solid curve
should be used.

Based on Fig. 11, demonstratitf§NRP in strong tur-
bulence we note that no matter how strong the diffuser, the
required level 21 to 22 dB cannot be attained only with the
use of partial coherence. Refer to Fig. 8 to see that in strong
fluctuations the flux variance can not be sufficiently re-
duced. In this regime, only the combination of different
tools (multiaperture receivers, adaptive optics, partial co-
herence would be efficient for the mitigation of the atmo-
spheric effects.
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Fig. 12 BER of partially coherent beams (logarithmic scale) as a
function of (SNRP) (in decibels) in weak turbulence for coherent and
partially coherent beams.

5.2 BERs

Following Ref. 34 the probability of erro(BER) for a
Gaussian beaniOOK modulation schemein the atmo-
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Fig. 13 BER of partially coherent beams (logarithmic scale) as a
function of (SNRP) (in decibels) in focusing regime for coherent and
partially coherent beams.

here to be criticalBER attains the value 16 at (SNRP

=25 dB, while a perfectly coherent beam can not produce
this BER with any transmitted powerSee Fig. 9 to find

spheric turbulence can be based on the gamma-gammahe corresponding values of the SNiRfor each beam.

probability density function of the intensity fluctuations for
all irradiance fluctuation conditions, i.e.,
(aﬂ)(a+ﬁ)/2 o

T(@T(B) Jo e”“(
XK, 2(xaB) 2] dx,

(SNRPx
2v2

BER= .xlatB2)—1

(48)

where(SNRP is defined in Eq(46); K,(x) is a K-Bessel
function; erfck) is the complementary error function; aad
and g are two parameters of the distribution, related corre-
spondingly to the large-scaleand the small-scalg inten-
sity fluctuations:

1
a= )
exploh ) — 1

1
A= exp(ofy,) —1

(49

whereof,  andaf, , are given by Eqs(40) and (42).
Although the probabilitf Eq. (39)] is valid in all atmo-
spheric conditions we concentrate primarily on weak and
moderate regimes where the partial coherence is proving to
be very efficient. Using the conventional way to display the

system performance, we plot BEREqQ. (39)] versus
(SNRP in decibel(see Fig. 12 for two beams: perfectly
coherent(dashed curveand partially coherent, witH,
=1 cm (solid curvé in weak turbulence ¢?=0.33). The
later diffuser is actually on the order of the optimal diffuser
for this particular scenari@refer to Fig. 9.

If the transmitted power of the operating system is fixed
(can not be adjustedhe partially coherent beam can im-
prove the BER up to several orders of magnitude over the
distances under 1 km and values ©f of the order of
10 ** m~2", which corresponds to Rytov variane€< 1
(for example, in Fig. 12 This increase of BER is shown

On the other hand if a certain system performance is
neededBER should be set up permanently to some level
then the diffuser can also be used as a tool for the reduction
of the transmitting power.

In Fig. 13 the BER of a perfectly coherent beétashed
curve and a partially coherent beam wikk= 1 mm (solid
curve are plotted in the focusing regimei= 1.05). This
choice of the diffuser was discussed in Fig. 10. For
(SNRP =25 dB, the BER=10"°, but it requires very high
level of input power (SNRgshould be at least 50 dB

In Fig. 14 the BER of the same two beams as in Fig. 13
are displayed versugSNRP in strong turbulence zﬁ
=7.0). In this case, partial coherence still reduces the BER
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Rytov variance 7.0
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Fig. 14 BER of partially coherent beams (logarithmic scale) as a

function of (SNRP) (in decibels) in strong turbulence for coherent
and partially coherent beams.
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but by an amount which is not sufficient for good system
performance.

With the decrease of correlation distarlge parameter
a given by Eqg. (49 of the gamma-gamma distribution
grows rapidly, which might cause some difficulties in nu-
merical integration of Eq(39). In such cases, a single

bulence the strongest possible diffusky ¢f the order of 1
mm) would be the most effective. Based on the analysis of
the BER we made a comparison between the results due to
a coherent beam and the optimal partially coherent beam
(based on the trade-off between the power loss and the flux
variance reduction in Sec. 95.2n weak, moderate, and

Gamma distribution might be used instead; hence the BER strong atmospheric fluctuations. While in weak turbulence

[Eqg. (39)] in such cases can be replaced by

the BER is practically controllable by the value lqf, in

other situations, the improvement in BER up to several

1y (- (SNRPX orders of magnitude was found with the use of a very
BER= 2T (y) fo erf 2v2 )XVeX[(— ydx, (50 strong diffuser (or quasi-incoherent sourcewith I,
=1mm.
wherey is the parameter of the distribution, related to the
flux variance[Eq. (39)] by References
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