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Abstract. Analytic expressions for the mutual coherence function
(MCF) and the scintillation index of a partially coherent lowest order
Gaussian beam wave propagating through the atmosphere (based on
Kolmogorov spectrum model) are developed for the pupil plane of a
receiving system. Partial coherence of the beam is modeled as a thin
(complex) phase screen with Gaussian spectrum (Rytov theory and
ABCD ray matrices are applied). The relation between the second- and
fourth-order statistics for a beam with any degree of coherence in the
atmosphere is introduced with the help of ‘‘effective’’ beam parameters,
deduced from the free-space MCF. In particular, the scintillation (in weak
and strong atmospheric conditions), based on these parameters, is stud-
ied as a function of the diffuser’s strength and that of the atmosphere.
The model is applied for the calculation of the SNR and bit error rates
(OOK modulation) of the communication link with diffuser at the trans-
mitter and slow detection system. The improvement of bit error rates is
observed in weak and strong atmospheric turbulence. In the weak re-
gime, the optimal diffuser can be found. © 2004 Society of Photo-Optical Instru-
mentation Engineers. [DOI: 10.1117/1.1636185]
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1 Introduction

The interest in the spatially partially coherent beam a
tool improving the performance of laser communicati
systems was indicated recently in a number
publications.1–9 Although it was theoretically understoo
before that partially coherent beams are affected less
atmospheric turbulence compared with perfectly coher
beams,10 the efficient mathematical tools are not yet dev
oped to carry this analysis over to the design of opti
systems for communication links with required quality.
this paper, we establish the theoretical model for the ca
lation of the scintillation index of the partially cohere
Gaussian beam in turbulence and demonstrate that it
provide such a tool for optical systems of different co
plexity and for a variety of atmospheric spectrum mode
First, we present a short overview of the literature.

Studies of the propagation of a partially coherent be
wave through atmospheric turbulence have been condu
over the past three decades by numerous researchers.10–31A
partially coherent source~spatially! can be generated in
number of different ways, including the placement of a d
fuser at the laser transmitter of a quasi-monochrom
source. Most theoretical studies concerning a spatially
tially coherent beam wave rely on a Gaussian Schell mo
330 Opt. Eng. 43(2) 330–341 (February 2004) 0091-3286/2004/$1
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for describing the partial coherence of the source beam.25,26

This model utilizes a Gaussian correlation function to d
scribe the surface roughness of the diffuser, often leadin
simplifications. However, in practice a diffuser with oth
spectral distribution function might be used so that it
preferable to have a spectrum-independent model.

The free-space second-order statistical characteristic
a partially coherent beam are quite easy to develop and
discussed in detail in Mandel and Wolf.25 Fourth-order sta-
tistics follow directly from second-order statistics only fo
the special case of a Gaussian field model.

Banakh et al.10,30 and Banakh and Buldakov29 showed
that intensity fluctuations of the Gaussian beam propa
ing through atmospheric turbulence can decrease as
source spatial coherence decreases. In these pa
asymptotic results were derived for the weak and satura
atmospheric regimes~excluding the important case of th
focusing regime!. In particular, in Ref. 29, only the limiting
case of quasi-incoherent radiation was considered; in R
30, the comparison of rigorous solution for the scintillatio
index of incoherent source with experimental data w
made. To our knowledge there are no analytic results
fourth-order statistics in the literature for the general ca
of the beam with arbitrary degree of spatial coherence.
5.00 © 2004 Society of Photo-Optical Instrumentation Engineers
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Korotkova, Andrews, and Phillips: Model for a partially coherent Gaussian beam . . .
The effects of a temporally partially coherent sour
were studied by Fante18 and by Baykal and Plonus.21

The conventional method for developing the mutual c
herence function~MCF! of a spatially partially coheren
source is to use the extended Huygens-Fresnel princ
From knowledge of the MCF, one can then infer the s
radius of the beam and the spatial coherence radius. Ex
sion of the extended Huygens-Fresnel principle to four
order statistics, such as the scintillation index, leads
mathematical complexities in the resulting integration t
necessitate various types of approximations. The exten
Huygens-Fresnel principle was used by Banakh et al.10 and
by Baykal and Plonus21 whereas Leader16 used the
Rayleigh-Sommerfeld scattering theory. Most theoreti
calculations, however, were based on a quadratic appr
mation for the structure function. A quadratic phase str
ture function implies that only wave tilts are induced on t
wave by turbulence, which can lead to results that are
consistent with experimental data.27,28

In this paper, we present an approach based onABCD
ray matrix theory and model the diffuser as a thin rand
phase screen that induces a complex phase perturb
~i.e., both amplitude and phase! on the transmitted wave a
the source.31,32We note that it is a different modeling from
the well-known phase screen approach, where only ph
perturbations are taken into account. Although our meth
is flexible about the spectrum model for the diffuser~in
fact, any physically meaningful spectrum could be applie!,
in this paper we use a Gaussian power spectrum to ma
comparison of our new results with those based on the c
ventional Gaussian Schell model.

Primarily, we focus our attention on the scintillation in
dex of the beam because this is the most important stat
for practical applications~lasercom, laser radar system
etc.!; however, other second- and fourth-order statistics
the wave field can be similarly calculated~refer to Chap. 8
of Ref. 32!.

The other important generalization that our approa
provides is the ability to utilize any of known atmosphe
spectrum models32 including inner and/or outer scales. I
this study~for the case of weak atmospheric turbulenc!,
we restrict ourselves to the Kolmogorov spectrum mo
for illustration purposes. Analytic results for the scintill
tion index of a partially coherent beam valid in weak atm
spheric fluctuations will be then extended to all atm
spheric conditions with the help of a theory developed
Andrews et al.33,34

Therefore, none of the previously existing restrictions
the degree of spatial coherence of the beam, diffuser, an
atmospheric spectrum models and the atmospheric reg
are present in our model so that the continuous depend
of the scintillation index on the source coherence~strength
of the diffuser! and strength of the atmospheric turbulen
can be analyzed.

Note also that theABCD ray matrix can be calculate
for the arbitrary optical system so that the scintillation
dex and other statistics can be derived at any distance f
the transmitter after passing through any combination
optical elements, in particular, image plane analysis
comes possible.35

Section 2 discusses the model and defines the Gaus
beam parameters for free-space propagation. Section 3
.
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sents the derivation of the mutual coherence function o
partially coherent beam in free space. In Sec. 4 the effec
beam parameters of partially coherent beam are defined
applied in the calculation of longitudinal and radial comp
nents of the scintillation index in weak and strong atm
spheric turbulence~including the focusing regime!. The ap-
plication of the model for a communication link i
demonstrated in Sec. 5, where the SNR and bit error r
are calculated.

2 Basic Model and Beam Parameters

A schematic diagram of the diffuser model and propagat
channel for the partially coherent beam is shown in Fig.
We assume the transmitted beam wave in absence of
diffuser is a TEM00 Gaussian beam wave characterized
beam parameters

Q0512
L

F0
, L05

2L

kW0
2 , ~1!

wherek52p/l is the laser wave number,l ~in meters! is
wavelength,L ~in meters! is propagation distance to th
collecting~Gaussian! lens,F0 ~in meters! is the phase front
radius of curvature, andW0 ~in meters! is the laser exit
aperture radius.

Following Andrews and Phillips,32 we introduce param-
etersL1 and Q1 for the beam incident on the collectin
lens ~in the pupil plane!, which characterize the unpe
turbed incident beam spot size radiusW1 and phase front
radius of curvatureF1 :

L15
2L

kW1
2 5

L0

Q0
21L0

2 , Q1511
L

F1
5

Q0

Q0
21L0

2 . ~2!

We assume the Gaussian lens at the receiver has radiusWG

and phase front radius of curvatureFG . After propagating
through the lens to the detector located in the image pl
at distanceL f behind the lens, the beam has radiusW2 and
radius of curvatureF2 , which are characterized by bea
parameters

L25
2L f

kW2
2

5
L

L f
F l11VG

~L/L f2L/FG1Q̄1!21~L11VG!2G , ~3!

Q2511
L f

F2

5
L

L f
F L/L f2L/FG1Q̄1

~L/L f2L/FG1Q̄1!21~L11VG!2G ,

~4!

Fig. 1 Propagation of a partially coherent beam.
331Optical Engineering, Vol. 43 No. 2, February 2004
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Korotkova, Andrews, and Phillips: Model for a partially coherent Gaussian beam . . .
whereQ̄1512Q1 and the nondimensional parameterVG
is defined by

VG5
2L

kWG
2 . ~5!

In Eq. ~4! we identify the image plane of the system b
imposing the generalized lens law condition32 L/L f

2L/FG1Q̄150, or Q250.
We model the diffuser in front of the laser transmitter

a thin random phase screen.31,32 However, we characterize
the phase screen by a power spectrum function rather
by a correlation function as in the Gaussian Schell mod
And, because the lateral correlation radiusl c ~in meters! is
the only effective scale size associated with the diffuser,
can characterize the diffuser by a single-scale Gaus
spectrum model

Fs~k!5
^n1

2& l c
3

8pAp
expS 2

1

4
l c
2k2D , ~6!

where k ~in inverse meters! is wave number, andl c ~in
meters! is directly related to the variancesg

2 used in Refs. 1
and 25 to describe the partial coherence properties of
source, namely,

l c
252sg

2. ~7!

The parameter̂n1
2& is the fluctuation in the index of refrac

tion induced by the diffuser.
In the following, we introduceqc5L/klc

2 as a conve-
nient nondimensional parameter analogous to the at
spheric parameterq5L/krpl

2 used in propagation studies
whererpl is the spatial coherence radius of a plane wave
turbulence.

3 Mutual Coherence Function in Free Space

Referring to Fig. 1, theABCD ray matrix for the propaga
tion path between the diffuser and pupil plane of the opti
system is simply

S A B

C DD 5S 1 L

0 1D . ~8!

The optical beam in the absence of the diffuser can
obtained from the generalized Huygens-Fresnel integ
which yields34

U0~r ,L !52
ik

2pB
eikLE E d2sU0~s,0!

3expF ik

2B
~As222s"r1Dr 2!G

5
1

A1 iaB
eikL expF2

1

2
b~L !kr2G , ~9!

wherer 5ur u, s5usu, AD2BC51, and
332 Optical Engineering, Vol. 43 No. 2, February 2004
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b~L !5
aD2 iC

A1 iaB
. ~10!

Let us assume the optical field at the transmitter is a u
amplitude Gaussian beam wave with spot sizeW0 and
phase front radius of curvatureF0 described by beam pa
rameters in Eq.~1!. Based on the simpleABCD matrix
given by Eq.~8!, the optical field Eq.~9! in the pupil plane
in the absence of atmospheric turbulence is

U~r ,L !5U0~r ,L !exp@Cs~r ,L !#

5~Q11L1!expF ikL1
ik

2L
~Q̄11 iL1!r 2G

3exp@Cs~r ,L !#, ~11!

whereCs is the complex phase perturbation caused by
diffuser. By using the thin phase screen model develo
by Andrews and Phillips32 Andrews et al.,33 we find that the
MCF of the Gaussian beam in the pupil plane is given b*

Gdiff~r1 ,r2 ,L !5^U~r1 ,L !U* ~r2 ,L !&

5G0~r1 ,r2 ,L !expH 24p2k2DzE
0

`

kFs~k!

3@12exp~L1Lk2/k!

3J0~kuQ1p22iL1r u!#dkJ , ~12!

whereDz is the thickness of the phase screen,J0(x) is a
Bessel function,r 5(1/2)(r11r2), p5r12r2 , r 5ur u, r
5upu, andG0(r1 ,r2 ,L) is the MCF in the absence of th
diffuser defined by

G0~r1 ,r0 ,L !5
W0

2

W1
2 expS 2

2r 2

W1
22

r2

2W1
22 i

k

F1
p"r D . ~13!

Note that integration along the propagation path is not
quired in this thin phase screen model. By rearrang
terms, Eq.~12! can also be written in the form32

Gdiff~r1 ,r2 ,L !5G0~r1 ,r2 ,L !exp@s r ,diff
2 ~r1 ,L !

1s r ,diff
2 ~r2 ,L !#exp@2Tdiff~L !#

3exp@2 1
2 Ddiff~r1 ,r2 ,L !#, ~14!

where each radial terms r ,diff
2 (r ,L) is linked to a change in

the mean intensity profile,Tdiff(L) describes the longitudi-
nal or on-axis change in mean intensity, a

*Note that the function defined by Eq.~12! is usually called the MCF only
by scientists working in areas of atmospheric propagation and laser
systems. However, this is only the spatial component of the stand
MCF defined in classic literature~the temporal counterpart is ignored du
to the assumption of a quasi-monochromatic beam!. Therefore, in our
notationGdiff(r1 ,r2 ,L) is the same as the mutual intensityJ(r1 ,r2 ,L)
introduced in Mandel and Wolf25 or J12(r1 ,r2 ,L) by Goodman.31
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Korotkova, Andrews, and Phillips: Model for a partially coherent Gaussian beam . . .
Re@Ddiff(r1 ,r2 ,L)#5Ddiff(r1 ,r2 ,L) is the wave structure
function ~WSF!. We use Re to denote the real part of t
expression.

If we use the Gaussian spectrum@Eq. ~6!#, each radial
component of the MCF@Eq. ~14!# reduces to

s r ,diff
2 ~r ,L !52p2k2DzE

0

`

kFs~k!exp~2L1Lk2/k!

3@ I 0~2L1rk!21#dk

5
Ap^n1

2&k2l cDz

2~114L1qc!
FexpS 4L1

2r 2

l c
2~114L1qc!

D 21G ,
~15!

where I 0(x)5J0( ix). To equate our results with thos
based on a Gaussian Schell model, we introduce the
malization

Ap^n1
2&k2l cDz

114L1qc
51. ~16!

Then, combined with a small argument approximation
the exponential function consistent with the Rytov theo
we obtain the expression

s r ,diff
2 ~r ,L !5

2L1
2r 2

l c
2~114L1qc!

5
4L1qc

114L1qc
S r 2

W1
2D . ~17!

Similarly, the longitudinal component of the MCF is

Tdiff~L !54p2k2DzE
0

`

kFs~k!@12exp~2L1Lk2/k!#dk

54L1qc , ~18!

where we have again used the normalization of Eq.~16!
and small argument approximation. The remaining quan
Ddiff(r1 ,r2 ,L) in Eq. ~14! has both real and imaginary par
given by

Ddiff~r1 ,r2 ,L !54p2k2DzE
0

`

kFs~k!exp~2L1Lk2/k!

3@ I 0~2L1r 1k!1I 0~2L1r 2k!

22J0~kuQ1p22iL1r u!#dk

52S Q1
21L1

2

114L1qc
D r2

l c
2 2

4iQ1L1r "p

~114L1qc!l c
2 , ~19!

the last step of which is a result of using the normalizat
of Eq. ~16! and small argument approximation. The com
nation of results taken from Eqs.~12! to ~19! yields the
following form for the MCF
-

Gdiff~r ,p,L !5S Q1
21L1

2

114L1qc
DexpF2

~2r 21r2!/2

W1
2~114L1qc!

G
3expF2S Q1

21L1
2

114L1qc
D r2

l c
2 Gexp

3F ik

L S 12Q114L1qc

114L1qc
D r "pG . ~20!

Although we use different notation, it is easy to sho
that this expression for the MCF is in exact agreement w
that based on a Gaussian Schell model and a qu
monochromatic Gaussian beam wave~e.g., see p. 280 in
Mandel and Wolf25!. All second-order statistics based o
the MCF such as beam intensity, coherence radius, b
spread, etc. can also be derived35 from Eq. ~20!.

The calculation of the MCF in the plane of the photod
tector ~image plane! can be made similarly.35 In this case
the ABCD ray matrix takes the form

S A B

C DD 5S 1 L f

0 1 D S 1 0

iaG 1D S 1 L

0 1D
5S 11 iaGL f L1L f~11 iaGL !

iaG 11 iaGL D , ~21!

whereaG52/(kWG
2 )1 i (1/FG).

4 Scintillation Index

Next we calculate the scintillation index caused by t
combination of diffuser and atmospheric turbulence. In c
culating the scintillation index, it is the integrated intens
that we must consider, taking into account the respo
time td of the detector and the coherence timets of the
source. That is, the coherence time of a qua
monochromatic laser source ists>1/B, where B is the
bandwidth of the source. If the source coherence time
much smaller than the detector’s integration time inter
td , i.e., ts!td ~slow detector!, temporal averaging of the
fluctuating intensity occurs, which reduces the scintillati
level through source aperture averaging.21,24 In the case of
a fast detectorts@td , the detector is sensitive to intensit
fluctuations of the source as well as those caused by
atmospheric turbulence. In both cases above the coher
time ta of the atmospheric turbulence is slow with respe
to bothts andtd , i.e.,

ts!td!ta , ~22!

for a slow detector, and

td!ts!ta , ~23!

for a fast detector. In this paper, we restrict ourselves to
case of slow detector only.

4.1 Longitudinal Component

In this section we develop the on-axis or longitudinal atm
spheric scintillation index. The longitudinal component
333Optical Engineering, Vol. 43 No. 2, February 2004
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Korotkova, Andrews, and Phillips: Model for a partially coherent Gaussian beam . . .
the scintillation index at the collecting lens will be used
Sec. 5 for the calculation of the flux variance of intens
fluctuations at the photodetector.

In the presence of atmospheric turbulence, we must t
into account some scattering properties caused by the
fuser. Namely, each scattering center~speckle cell size! as-
sociated with the spatial correlation radiusl c of the diffuser
surface acts like a separate beam coherence center w
the original beam source diameter. Hence, the diffuser
ates an ‘‘array of independent scattering centers,’’ the nu
ber of which is often approximated by16

Ns511
2W0

2

l c
2 511

4qc

L0
. ~24!

Thus, the number of speckle cells is of the order of un
for a weak diffuser and increases rapidly as the correla
radius l c decreases. Taking the scattering properties of
diffuser into account, we find it useful to model the beam
the receiver by an ‘‘effective diffuser beam’’~denoted later
by the subscripte! that changes in accordance with th
roughness or strength of the diffuser.

We can characterize the effective diffuser beam at
receiver by replacing the standard beam parametersQ1 and
L1 that arise in the absence of the diffuser with a set
effective beam parametersQe and Le . To identify these
effective beam parameters, we simply compare parame
of the MCF in the absence of the diffuser with paramet
associated with the MCF in the presence of the diffuser.
example, the MCF in the absence of the diffuser, scaled
the on-axis intensity, is given by

G0~r ,p,L !

G0~0,0,L !
5expS 2

L1kr2

L
2

L1kr2

4L
1

ikQ̄1

L
r "pD , ~25!

which identifies beam parametersQ̄152L/F1 and L1

52L/kW1
2. The scaled MCF in the presence of the diffus

can be rearranged in the form@see Eq.~20!#

Gdiff~r ,p,L !

Gdiff~0,0,L !
5expF2

L1kr2

~114L1qc!L
2

L1Nskr2

4~114L1qc!L

1
ik~Q̄14L1qc!

~114L1qc!L
r "pG . ~26!

On comparing similar terms appearing in Eqs.~25! and
~26!, the effective radius of curvature of the beam can
identified in Eq.~26! by the last term involving the com
plex exponential function, namely

Q̄e52
L

Fe
5

Q̄114L1qc

114L1qc
. ~27!

This quantity is a function of the strength of the diffus
qc , which in the limiting case of a strong diffuserqc→`

( l c→0), yieldsQ̄e51 ~i.e., the phase front radius of cu
vatureFe approaches2L, similar to the case of a focuse
beam!. For a weak diffuserqc→0 (l c→`), we are led to

Q̄e5Q̄1 ~i.e., Fe reduces to its free-space valueF1 in the
334 Optical Engineering, Vol. 43 No. 2, February 2004
-
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s

absence of the diffuser!. Hence, in the development her
we will formally replace the parameterQ1 with the effec-
tive beam parameter

Qe511
L

Fe
5

Q1

114L1qc
5

Q0

Q0
21L0

2Ns
, ~28!

where we have relatedQe to receiver plane beam param
eters and to transmitter plane beam parameters. The q
tity Ns is the number of speckle cells@Eq. ~24!#.

For the effective beam parameterLe we are faced with a
different situation. Namely, the term involvingr2 can be
associated with longitudinal characteristics of the be
wave induced by the diffuser~rather than specific points in
the beam!. In this case, we define

Le5
L1Ns

114L1qc
5

L0Ns

Q0
21L0

2Ns
, ~29!

limiting cases of which lead to

Le;H L1 , qc→0

1/L0 , qc→`
. ~30!

That is, for a weak diffuser the effective beam paramete
Eq. ~29! reduces to parameterL1 , whereas for a strong
diffuser it reduces to 1/L0 , the latter of which can be as
sociated with transmitter aperture averaging.36 However, on
the basis of the radial behavior of the beam or effective s
size, we can identify an effective parameterLe with the
term involving r 2 in Eq. ~26!. Doing so, we would obtain
the same expression as Eq.~29!, but with Ns51 in the
numerator terms. Because we are concerned here with
longitudinal component of the scintillation index, we u
Eq. ~29! to defineLe .

Based on the preceding observations, we claim the l
gitudinal component of the scintillation index in the pre
ence of a diffuser is defined under the Rytov approximat
by32

s1,weak
2 ~0,L !58p2k2LE

0

1E
0

`

kFn~k!expS 2
LeLk2j

k D
3H 12cosFLk2

k
j~12Q̄ej!G J dkdj, ~31!

whereQ̄e512Qe . Based on a Kolmogorov spectrum, th
integral yields32

s1,weak
2 ~0,L ![sB

2

53.86s1
2 ReF i5/6

2F1S 2
5

6
,
11

6
;
17

6
;Q̄e1 iLeD

2
11

16
Le

5/6G , ~32!

where2F1(a,b;c;x) is a hypergeometric function.34
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Korotkova, Andrews, and Phillips: Model for a partially coherent Gaussian beam . . .
Numerical values deduced from Eq.~32! are essentially
the same as those obtained from Eq.~6! in Banakh et al.10

In Fig. 2 we compare the scintillation index@Eq. ~32!# as a
function of propagation distanceL for a Gaussian beam
wave propagating through atmospheric turbulence in
absence of the diffuserl c5` ~solid curve!, for a moderate
diffuser with l c51 cm ~dashed curve! and for a very strong
diffuser l c50 ~dashed curve!. Input parameters areW0

52.5 cm, l51 mm, and Cn
2510213 m22/3. For smaller

values ofl c the scintillation can be considerably reduce
However, the effect generally saturates forl c of the order of
1 mm.

Equation~32! is restricted to weak fluctuations. Unde
strong fluctuation conditions, we can use the strong fluct
tion theory developed by Andrews et al.32,34 which yields

s1,atm
2 ~0,L !5expF 0.49sB

2

~110.56sB
12/5!7/61

0.51sB
2

~110.69sB
12/5!5/6G

21, ~33!

wheresB
2 is defined by Eq.~32!.

In Fig. 3 we show Eq.~33! as a function of the Rytov
variance s1

251.23Cn
2k7/6L11/6 for fixed propagation dis-

tanceL51 km. There is a smooth transition of the scint
lation index from one limiting case@coherent beam~no
diffuser, qc50) to the other incoherent~strong diffuser,
qc5`)#. As the effect of the diffuser increases, the ma
mum value of the scintillation index does not change
occurs at larger values of the Rytov variance; therefore,
advantage of using partially coherent beams can be
pected in weak or focusing atmospheric regimes.

Figure 4 displays the result@Eq. ~33!# from a different
perspective: the refractive index structure paramete
fixed Cn

2510213 m2/3, but the propagation distanc
changes. We show three cases: coherent beam withl c5`
~solid curve!, partially coherent beam withl c51 cm
~dashed curve!, and incoherent beam withl c50 ~dotted

Fig. 2 Effective scintillation index of a partially coherent beam in
weak atmosphere versus strength of turbulence (Rytov variance s1)
and nondimensional diffuser’s correlation qc .
-

curve!. For short ranges~up to 3 to 4 km! partially coherent
and incoherent beams assume lower levels of the scint
tion index compared with a coherent beam.

4.2 Radial Component

At a point in the beam wave off the optical axis, the sc
tillation index can be expressed as the sum of two com
nents

s1
2~r ,L !5s1,r

2 ~r ,L !1s1
2~0,L !, ~34!

where the first component is the radial component and
second is the longitudinal component defined by Eq.~33!.
The radial component vanishes on the optical axis (r 50)
and, under weak fluctuation conditions in the absence o
diffuser, it is known that the radial component of the sc
tillation index is given by32

Fig. 3 Effective scintillation index of a partially coherent beam in the
atmosphere versus strength of turbulence (Rytov variance s1) and
nondimensional diffuser’s correlation qc .

Fig. 4 Effective scintillation index of a partially coherent beam in the
atmosphere versus the propagation distance L and correlation dis-
tance lc .
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s1,r
2 ~r ,L !54.42s1

2L1
5/6 r 2

W1
2 , r ,W1 , s1

2!1. ~35!

It was shown in Ref. 35 that an additional diffractio
caused by the atmosphere and diffuser together lead t
effective spot radius given by

We5W1~114qcL111.63s1
12/5L1!1/2. ~36!

By following the approach in Refs. 34 and 37, we the
fore make the beam parameter replacement

L1⇒
L1

114L1qc11.63s1
12/5L1

, ~37!

and formally deduce that

s1,r
2 ~r ,L !54.42s1

2S L1

114L1qc11.63s1
12/5L1

D 5/6

3
r 2

W1
2~114L1qc11.63s1

12/5L1!
, r ,W1 .

~38!

In both Eqs.~35! and~38!, we have retained the restrictio
r ,W1 , although this may be more restrictive than nec
sary. The full range of validity for these expressions has
yet been established. As the Rytov variances1

2→`, the
radial component@Eq. ~35!# eventually vanishes and th
beam wave acts more and more like a propagating sphe
wave.

Note that, for a fixed strength of atmospheric turbulen
~i.e., s1

25const.), the radial component vanishes in t
limit l c→0 (qc→`). Similarly, for a fixed diffuser
strength~i.e., l c5const.), the radial component vanishes
s1

2→`. In Fig. 5 we plot the radial component of the sci
tillation index@Eq. ~38!# versusr /We for different values of

Fig. 5 Effective radial component of the scintillation index for differ-
ent normalized correlations of the diffuser.
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n

l

qc . The radial component of the scintillation index for th
incoherent source is zero independently of the displacem
r.

The radial component should generally be included i
analysis when perfect alignment of the transmitter and
receiver systems is not possible.

5 Application for Laser Communications

The reduction of the on-axis scintillation index due to pa
tial coherence of the source discussed in Sec. 4 alone w
not be sufficient for the high-quality data transfer calcula
in terms of the bit error rate~BER! in communication sys-
tems. However, the combination of partial coherence w
large enough collecting lens can provide the required B
level. Following Ref. 34, the flux variance of the irradian
fluctuations~valid for all atmospheric conditions! at the de-
tector plane calculated for the collecting lens with norm
ized radiusVG is

s irrad
2 ~L1L f ,VG!5expbs ln x

2 ~L1L f ,VG!

1s ln y
2 ~L1L f ,VG!c21, ~39!

wheres ln x
2 is the flux variance associated with large-sca

fluctuations given by38

s ln x
2 ~L1L f ,VG!50.49s1

2S VG2Le

VG1Le
D 2

3RF hx

110.4hx~11Qe!/~Le1VG!G
7/6

,

~40!

whereR51/32(1/2)(12Qe)1(1/5)(12Qe)
2. The quan-

tity hx in Eq. ~40! is the normalized large-scale cutoff fre
quency determined by the asymptotic behavior ofs ln x

2 in
weak turbulence and saturation regime36,38:

hx5
R26/7~sB /s1!12/7

110.56sB
12/5 . ~41!

The small-scale flux variances ln y
2 in Eq. ~39! is simi-

larly defined by

s ln y
2 ~L1L f ,VG!5

1.27s1
2hy

25/6

110.4hy /~L11VG!
, ~42!

where the corresponding cutoff frequency is

hy53~s1 /sB!12/5~110.69sB
12/5!. ~43!

Figure 6 shows the flux variance@Eq. ~39!# versus the
normalized parameter of the collecting lensVG @defined in
Eq. ~5!# for a perfectly coherent beam, several partia
coherent beams withqc50.1, 1, and 10, and an incohere
beam. The propagation distanceL51 km, Cn

2

510213 m22/3, leading to the Rytov variances1
2

51.23Cn
2L11/6k7/650.33. We see that in the weak fluctu

tion regime there is a significant reduction of the flux, e
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pecially for a point aperture (VG@1). With the increase of
the collecting aperture size this effect decreases. In
analysis of the SNR and the BERs here we choose
collecting aperture radiusWG51 cm to concentrate prima
rily on the averaging effect due to the transmitter. Simi
curves are generated in moderate turbulence (s1

251.05) in
Fig. 7 and in strong turbulence (s1

257.0) in Fig. 8, but as
the strength of turbulence grows the absolute reduction
flux variance deminishes.

5.1 Signal-to-Noise Ratio (SNR)

In free space, the signal to noise ratio SNRC0 of a coherent
beam is conventionally defined by34

SNRC05
i S

sN
, ~44!

Fig. 6 Flux variance s irrad
2 (L1Lf ,ΩG) as a function of the normal-

ized radius of the collecting lens ΩG for coherent and partially co-
herent beams in weak turbulence.

Fig. 7 Flux variance s irrad
2 (L1Lf ,ΩG) as a function of the normal-

ized radius of the collecting lens ΩG for coherent and partially co-
herent beams in focusing regime.
f

wherei S is the received signal current~proportional to the
transmitted power! andsN is the standard deviation of th
detector noise. Since partially coherent beams have gre
divergence than coherent beams, the received power
pends on the degree of coherence of the wave as well,
more power is required for less coherent beams to sus
the same SNR as the perfectly coherent beam~of the same
size and phase front radius of curvature! produces. There-
fore in free space the relation between the SNRC0 and the
SNR of a partially coherent beam, say, SNRP0 can be de-
duced from this power loss or, equivalently, from the be
size of partially coherent beam at the receiver38

SNRP05
SNRC0

~PP0 /PC0!1/25
SNRC0

~114qcL1!1/2

5
i S

sN~114qcL1!1/2, ~45!

wherePP0 is the received power of the partially cohere
beam andPC0 is the power of the coherent beam. Th
quantity 114qcL1 represents the relative beam spread d
to the diffuser with strength38 qc .

In the atmosphere the standard definition of the me
SNR of a partially coherent beam can be adap
similarly34,39

^SNRP&5
SNRC0

~^PP&/PP01s irrad
2 SNRC0

2!1/2

5
SNRC0

~114qcL111.63s1
12/5L11s irrad

2 SNRC0
2!1/2,

~46!

where brackets are used for ensemble averaging,s1
2 is the

Rytov variance, and flux variances irrad
2 was defined by Eq.

~39!.

Fig. 8 Flux variance s irrad
2 (L1Lf ,ΩG) as a function of the normal-

ized radius of the collecting lens ΩG for coherent and partially co-
herent beams in strong turbulence.
337Optical Engineering, Vol. 43 No. 2, February 2004
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At first, note that Eq.~46! implies that regardless of th
amount of the input power (SNRC0) ^SNRP& stays limited
by the scintillation39 @in striking contrast with free spac
analysis of Eq.~45!#, i.e.,

lim
SNRC0→`

^SNRP&5
1

s irrad
. ~47!

The other important consequence of Eq.~46! stems from
the fact that for given SNRC0 and atmospheric condition
the value of^SNRP& is determined by two factors: powe
reduction^PP&/PP0 caused by beam divergence and fl
variances irrad

2 . While the former term obviously deterio
rates^SNRP& the latter can improve it. That is, ifs irrad

2 is
reduced because of the diffuser, then^SNRP& will increase
independently of beam spreading, provided SNRC0 is suf-
ficiently large according to Eq.~47!.

Figures 9 to 11 shoŵSNRP& ~in decibels! is displayed
as a function of SNRC0 ~in decibels! in different atmo-

Fig. 9 ^SNRP& (in decibels) as a function of SNRC0 (in decibels) in
weak turbulence for several values of lc .

Fig. 10 ^SNRP& (in decibels) as a function of SNRC0 (in decibels) in
the focusing regime for several values of lc .
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spheric conditions. We note that in all regimes the atm
spheric SNR of a perfectly coherent beam~dashed-and-
dotted curves everywhere! is always below 21 to 22 dB
which corresponds to conventionally accepted BER of
operating system~of the order of 1029).

In the weak fluctuation regime~Fig. 9! the use of partial
coherence provides a noticeable improvement of^SNRP&,
namely, with SNRC0 in the range 40 to 50 dB, it is possibl
to obtain ^SNRP& ~in decibels! exceeding 21 to 22 dB
~This can be explained with help of Fig. 6, where it
shown that the flux-variance of partially coherent beam
this regime takes sufficiently low values.! Also, from Fig.
9, the saturation effect@Eq. ~47!# of ^SNRP& with the in-
crease of input power is evident for any strength of t
diffuser and that of the turbulence. Therefore, for a parti
lar communication link operating in weak turbulence the
exists the optimal diffuser. For example, in Fig. 9 f
SNRC0530 dB the best choice is the diffuser withl c

51 cm ~dotted curve!, which corresponds tô SNRP&
525 dB.

In the focusing regime, the power reduction caused b
partially coherent beam spreading starts to dominate
favorable effect of the flux variance~recall Fig. 7!. There-
fore, as shown in Fig. 10 stronger diffuser together w
greater amount of transmitted power are required; here,
fixed SNRC0530 dB the diffuser withl c51 cm ~dotted
curve! would not provide a sufficient level of BER; fo
SNRC0550 dB the diffuser withl c51 mm ~solid curve!
should be used.

Based on Fig. 11, demonstrating^SNRP& in strong tur-
bulence we note that no matter how strong the diffuser,
required level 21 to 22 dB cannot be attained only with t
use of partial coherence. Refer to Fig. 8 to see that in str
fluctuations the flux variance can not be sufficiently r
duced. In this regime, only the combination of differe
tools ~multiaperture receivers, adaptive optics, partial c
herence! would be efficient for the mitigation of the atmo
spheric effects.

Fig. 11 ^SNRP& (in decibels) as a function of SNRC0 (in decibels) in
strong turbulence for several values of lc .
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5.2 BERs

Following Ref. 34 the probability of error~BER! for a
Gaussian beam~OOK modulation scheme! in the atmo-
spheric turbulence can be based on the gamma-gam
probability density function of the intensity fluctuations f
all irradiance fluctuation conditions, i.e.,

BER5
~ab!~a1b!/2

G~a!G~b!
E

0

`

erfcS ^SNRP&x

2&
D •x~a1b/2!21

3Ka2b@2~xab!1/2#dx, ~48!

where^SNRP& is defined in Eq.~46!; Kp(x) is a K-Bessel
function; erfc(x) is the complementary error function; anda
andb are two parameters of the distribution, related cor
spondingly to the large-scalex and the small-scaley inten-
sity fluctuations:

a5
1

exp~s ln x
2 !21

, b5
1

exp~s ln y
2 !21

~49!

wheres ln x
2 ands ln y

2 are given by Eqs.~40! and ~42!.
Although the probability@Eq. ~39!# is valid in all atmo-

spheric conditions we concentrate primarily on weak a
moderate regimes where the partial coherence is provin
be very efficient. Using the conventional way to display t
system performance, we plot BER@Eq. ~39!# versus
^SNRP& in decibel ~see Fig. 12! for two beams: perfectly
coherent ~dashed curve! and partially coherent, withl c

51 cm ~solid curve! in weak turbulence (s1
250.33). The

later diffuser is actually on the order of the optimal diffus
for this particular scenario~refer to Fig. 9!.

If the transmitted power of the operating system is fix
~can not be adjusted! the partially coherent beam can im
prove the BER up to several orders of magnitude over
distances under 1 km and values ofCn

2 of the order of
10214 m22/3, which corresponds to Rytov variances1

2,1
~for example, in Fig. 12!. This increase of BER is show

Fig. 12 BER of partially coherent beams (logarithmic scale) as a
function of ^SNRP& (in decibels) in weak turbulence for coherent and
partially coherent beams.
a

here to be critical~BER attains the value 1029 at ^SNRP&
525 dB, while a perfectly coherent beam can not produ
this BER with any transmitted power!. See Fig. 9 to find
the corresponding values of the SNRC0 for each beam.

On the other hand if a certain system performance
needed~BER should be set up permanently to some lev!
then the diffuser can also be used as a tool for the reduc
of the transmitting power.

In Fig. 13 the BER of a perfectly coherent beam~dashed
curve! and a partially coherent beam withl c51 mm ~solid
curve! are plotted in the focusing regime (s1

251.05). This
choice of the diffuser was discussed in Fig. 10. F
^SNRP&525 dB, the BER51029, but it requires very high
level of input power (SNRC0 should be at least 50 dB!.

In Fig. 14 the BER of the same two beams as in Fig.
are displayed versuŝSNRP& in strong turbulence (s1

2

57.0). In this case, partial coherence still reduces the B

Fig. 13 BER of partially coherent beams (logarithmic scale) as a
function of ^SNRP& (in decibels) in focusing regime for coherent and
partially coherent beams.

Fig. 14 BER of partially coherent beams (logarithmic scale) as a
function of ^SNRP& (in decibels) in strong turbulence for coherent
and partially coherent beams.
339Optical Engineering, Vol. 43 No. 2, February 2004
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but by an amount which is not sufficient for good syste
performance.

With the decrease of correlation distancel c , parameter
a given by Eq. ~49! of the gamma-gamma distributio
grows rapidly, which might cause some difficulties in n
merical integration of Eq.~39!. In such cases, a singl
Gamma distribution might be used instead; hence the B
@Eq. ~39!# in such cases can be replaced by

BER5
1

2

gg

G~g!
E

0

`

erfcS ^SNRP&x

2& D xg exp~2gx!dx, ~50!

whereg is the parameter of the distribution, related to t
flux variance@Eq. ~39!# by

g5
1

s irrad
2 ~L1L f ,VG!

. ~51!

The integral of Eq.~50! predicts slightly higher levels o
the BER compared with that of Eq.~39!. The solid curve in
Fig. 13 was generated with the help of this simplificatio

6 Conclusions

The model~based on the thin complex phase screen at
transmitter! for the analysis of the scintillation index of
partially coherent beam significantly differs from the co
ventional approach. However, our formulas proved to
consistent~sometimes even more accurate! with results
known in the literature for all statistics of interest.35 For
instance, the MCF of a partially coherent Gaussian be
~and other statistics based on it! was established in the
weak atmospheric regime for the Kolmogorov spectr
model, improving results of Ref. 1. Moreover, our model
independent of the spectrum models for the phase sc
and the atmosphere; therefore the effects of inner/o
scales can be also studied by changing the spectrum.32 On
the other hand, the model would work for more compl
optical systems; in Ref. 35, we illustrated this by derivi
several statistics for the image plane of the receiver.

However, the MCF was derived mainly to establish t
model. The real breakthrough of our approach is the po
bility to model the scintillation index of a partially cohere
beam for all atmospheric conditions. The connection
tween second order statistics and the scintillation index
made through the way of ‘‘effective’’ beam parameters,
lated to the degree of coherence. The longitudinal and
dial components of the scintillation index were treat
separately but both were studied as a function of Ry
variance and the degree of coherence. The correspon
plots ~see Figs. 2–5! display the dependence of the scint
lation index components on the degree of spatial cohere
of the source including incoherent and coherent limits.

A developed simple algebraic expression for the lon
tudinal component of the scintillation index enabled us
analyze the performance of the lasercom channel~Sec. 5!.
In particular, the calculation of the SNR and BER was de
onstrated in detail. For the analysis of the SNR~Sec. 5.1!
one should take into account the relation@Eq. ~46!# between
the transmitted power and coherence lengthl c to optimize
the later parameter where it is possible~in weak conditions,
for short ranges!. In moderate and strong atmospheric tu
340 Optical Engineering, Vol. 43 No. 2, February 2004
n
r

-

-

g

e

bulence the strongest possible diffuser (l c of the order of 1
mm! would be the most effective. Based on the analysis
the BER we made a comparison between the results du
a coherent beam and the optimal partially coherent be
~based on the trade-off between the power loss and the
variance reduction in Sec. 5.2! in weak, moderate, and
strong atmospheric fluctuations. While in weak turbulen
the BER is practically controllable by the value ofl c , in
other situations, the improvement in BER up to seve
orders of magnitude was found with the use of a ve
strong diffuser ~or quasi-incoherent source! with l c

51 mm.
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